Learning Discriminative Shrinkage Deep Networks for Image Deconvolution

Pin-Hung Kuo¹ Jinshan Pan² Shao-Yi Chien¹ Ming-Hsuan Yang^{3,4,5} ¹National Taiwan University ²Nanjing University of Science and Technology ³Google Research ⁴University of California, Merced ⁵Yonsei University

Introduction

Goals: Design a deblurring deep learning model based on Maximum-a-Posteriori estimation. **Challenges:**

- How to learn the **shrinkage functions** corresponding to various learned filters?
- With the regularization / data terms, how to solve the **deconvolution problem**?

Architecture

ADMM

We model the problem as:

$$\min_{\mathbf{u}, \mathbf{v}, \mathbf{x}, \mathbf{z}} \sum_{i=1}^{N} R_i(\mathbf{v}_i) + \sum_{j=1+N}^{M+N} R_j(\mathbf{z}_j) \quad s.t. \quad \mathbf{F}_i \mathbf{x} = \mathbf{v}_i, \quad \mathbf{G}_j(\mathbf{y} - \mathbf{H}\mathbf{x}) = \mathbf{z}_j$$

and solve it by ADMM:

$$\begin{aligned} \mathbf{v}_{i}^{t+1} &= \mathbf{prox}_{\lambda_{i}R_{i}}(\mathbf{F}_{i}\mathbf{x}^{t} + \mathbf{u}_{i}^{t}), \\ \mathbf{z}_{j}^{t+1} &= \mathbf{prox}_{\lambda_{j}R_{j}}(\mathbf{G}_{j}(\mathbf{y} - \mathbf{H}\mathbf{x}^{t}) + \mathbf{u}_{j}^{t}), \\ &\left(\sum_{i=1}^{N} \rho_{i}\mathbf{F}_{i}^{\top}\mathbf{F}_{i} + \sum_{j=N+1}^{N+M} \rho_{j}\mathbf{H}^{\top}\mathbf{G}_{j}^{\top}\mathbf{G}_{j}\mathbf{H}\right)\mathbf{x}^{t+1} \\ &= \left(\sum_{i=1}^{N} \rho_{i}\mathbf{F}_{i}^{\top}(\mathbf{v}_{i}^{t+1} - \mathbf{u}_{i}^{t}) + \sum_{j=N+1}^{N+M} \rho_{j}\mathbf{H}^{\top}\mathbf{G}_{j}^{\top}(\mathbf{G}_{j}\mathbf{y} - \mathbf{z}_{j}^{t+1} + \mathbf{u}_{j}^{t})\right) \\ &\mathbf{u}_{i}^{t+1} = \mathbf{u}_{i}^{t} + \mathbf{F}_{i}\mathbf{x}^{t+1} - \mathbf{v}_{i}^{t+1}, \\ &\mathbf{u}_{j}^{t+1} = \mathbf{u}_{j}^{t} + \mathbf{G}_{j}(\mathbf{y} - \mathbf{H}\mathbf{x}^{t+1}) - \mathbf{z}_{j}^{t+1}. \end{aligned}$$

Discriminative Shrinkage Function

As Maxout Layers can linearly approximate any function, the shrinkage functions are learned.

CG Net

To solve the deconvolution problem, we design the CGNet to replace conventional CG or FFT. For FFT and CG, we test them w/o and w/ denoising. CGNet achieves the highest performance with reasonable complexity.

Results

Quantitative Results on Benchmark Datasets

Dataset	noise	IRCNN [73] PSNR / SSIM	SFARL[48] PSNR / SSIM	ADM_UDM [21] PSNR / SSIM	CPCR [12] PSNR / SSIM	KerUNC [41] PSNR / SSIM	VEM [42] PSNR / SSIM	DWDN [10] PSNR / SSIM	SVMAP [11] PSNR / SSIM	DRUNet [72] PSNR / SSIM	DSDNet(Light) PSNR / SSIM	DSDNet(Full PSNR / SSIM
Levin [30]	3%	29.70 / 0.864	16.82 / 0.255	31.48 / 0.922 28.61 / 0.812 27.83 / 0.827	25.61 / 0.765	21.72 / 0.416	29.47 / 0.867	31.94 / 0.916	31.20 / 0.893	30.86 / 0.905	32.13 / 0.918	32.89 / 0.928
BSD100 [38]	1% 3% 5%	29.20 / 0.817 27.54 / 0.762 27.04 / 0.756	24.21 / 0.568 15.80 / 0.245 12.56 / 0.146	29.39 / 0.836 26.92 / 0.722 26.04 / 0.697	28.77 / 0.829 25.96 / 0.712 25.75 / 0.688	29.23 / 0.829 22.10 / 0.430 18.99 / 0.297	29.54 / 0.848 27.09 / 0.746 26.11 / 0.698	31.10 / 0.881 28.47 / 0.797 27.50 / 0.762	31.52 / 0.888 27.94 / 0.762 27.59 / 0.763	30.36 / 0.872 28.10 / 0.798 27.19 / 0.767	$\begin{array}{c} 31.50 \ / \ \underline{0.892} \\ \underline{28.73} \ / \ \underline{0.812} \\ \underline{27.64} \ / \ \underline{0.774} \end{array}$	32.01 / 0.898 29.08 / 0.820 27.96 / 0.788
Set 5 [3]	3%	28.66 / 0.813	15.50 / 0.211	30.52 / 0.868 27.64 / 0.709 26.75 / 0.756	27.94 / 0.799	21.39 / 0.376	28.40 / 0.804	29.54 / 0.838	28.78 / 0.812	29.21 / 0.841	29.94 / 0.843	30.40 / 0.85

Qualitative Comparison of Synthetic Blurring

Qualitative Comparison of Real Blurring

Qualitative Comparison of Model Size

Speed vs Accuracy

33.5		• Full • Heavy
33		Light
32.5		Feather
BSNR (dB) 32 31.5		• SVMAP DWDN •
31		• VEM • DRUNet
30.5	•ADM_UDM	• KerUNC

Execution Time (sec)

Quantitative Results on Real Blurring

	IRCNN [73]	ADM_UDM [21]	KerUNC [41]	VEM [42]	DWDN [10]	SVMAP [11]	DRUNet [72]	DSDNet
BRISQUE	43.484	36.598	37.816	33.663	34.027	35.508	46.774	33.129
PIQE	78.700	67.605	65.674	44.942	51.348	56.032	81.074	49.788

Specification of 4 Sizes

	Feather	Light	Heavy	Full
\overline{T}	2	3	3	4
M, N	24	24	49	49

https://github.com/setsunil/DSDNet